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Summary

Non-linear ccupled differential equations for the 2 transverse
campopents of the local magnetic field have been obtalned for a
plane wave propagating in a hamogeneous cold Vlasov plasma under
the iInfluence of an external magnetic fleld Bo’ for any angle
(90° - a) between Bo and the wave vector. There is oae exact
single valued solution snd approximate multiple valued solutions
for a = 9005 for o = 0°, the solution is reducible to an integral
and is multiple valued. A perturbation method has been used to
obtaln a restricted class of solutions for intermediate angles.
A numerical example has been worked out in detail for a specific
value of the field energy density and for 12 different angles;
the plasma parameters in this example are those appropriate to
the ionosphere of the earth. Other periodic solutions (for

which the perturbation solution does not work) may also exist for

small values of a, but they bave not bsen considered here.
4 ’



I. INTRODUCTION

Non-linear plane waves propagating in a fully ionized "co
collisionless plasma in a magnetic field Bo have previously been
studied for the cases of propagation across the magnetic field Bo
(magneto-sonic waves), and propagation parallel to the magnetic
field (non-linear Alfven Waves). The former case was considered
in detail by Davis, List and Schliiter (Z. Naturforsch.l3 a,

916 (1958)) and the plasma supports partly compressional infinitely
periodic waves for restricted valuss of the transverse electric
field. Periodic soclutions corresponding to non-linear Alfvt-ln Waves
also exist, some of which are incompressible, circularly polarized
waves (V.C.A. Ferraro, Proc. Roy. Soc. \Londom) A233, 310 (1955);
D. Montgomery, Phys. Fluids 2, 585 (1959); others are non-
polarized compressible waves.

In this study, a more general treatment is given; we lock
for infinitely periodic waves for any angle (90° - @) betweea
the wave vector aud the applied magnetic field. For such
constant-profile waves, there has to be a "wave" coordinate system
(moving with a comstant velozity V relative to the laboratory
frame) in which all quantities are time independent.

Wz postulate the existence of such a wave frame in part II
and, starting from the equations of motion and Maxwell's equations,
w2 derive coupled dimensionless differentisl equations for the
transverse components (i.e., those perpendicular to the direction
of propagation) of the magnetic fleld. The coefficients of these

equations contain the angle o as & parameter.
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Part III is subdivided into 2 sectlions:

1) In Section A, a generalized perturbation solution is
set up for o Min < a < 900, where o Min is a small angle. This
is based on the fact that in the physical cass of interest, one
of the coefficients (q) in the equations is muca larger than all
others for > o Min. The asymptotic method of Bogoliubev and
Mitropolsky is used to avoid the possible appearance of secular
(1.e. time proportional) terms; the first-order results are then
applied to the cases o = 90o and o Min < a < 900. For o = 900,
the solution will give Alfve{n Waves as a speclal case and also
more complicated waves propagating in a compressible gas. For o Min
< a<90°, the gas always behaves compressibly.

2) 1In Section B, it is shown that for o = 0°, the solution
reduces to an integral, giving linearly polarized waves.

Numerical results are discussed in part IV for plasms
parameters corresponding to the earth's ionosphere and the various

approximations are discusssd in the conclusion.
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II. FORMULATION

A. Derivation of the differential equations.

We start with the following equations in the wave frame,

3, 7. 2 pecomss 7. 2
in which the operator 3t + Ve > becomes v. Sk
Maxwell's eguations: —gi_ * B=o0 (1)
: )
—_—— Bzl e (2)
= o)
ox a
—a-:' xE=0 (3)
ox
—a-._ x3B= = Ze:r nc?c (%)
ax c a
Continuity equation: —a-? - (nU ;o) =0 (5)
/X
Momentum equation: ;cr JRL7- S (ﬁ + m) (6)
ox n c
o

It will be assumed that we are dealing with a plasma of
fully ionized hydrogen; o is an index denoting the protons or the
electrons (e'p = e, e, = -e) with densities n_ and velocities ;o"
and ﬁ, B are the local electric and magnetic fields. This choies




.

1s appropriate for our later application to the earth's ionosphere.
We orient the x - axis parallel to the direction of propagation,

go that all variables are functions of x only. The velocity

-

v_ has components (ug, A wo_) along the(x, y, z) axes. Similarly,

= -
E=(E, Es Ez), B= (B, Bys Bz).

From equation (1), B_= B, = constant (1
For the waves we are considering, E =0 L—!G-EB—] 3

substituting this in equation (2),

1 4By . - _ _ v. B
T & ﬁ‘(nP ne) _eAn—o_—T&G——nc 3

N . 2
o 2% = o[ les (BD] - o[(W)° Blees

where:

L = gradient scale

VA= Alfvén speed

Re= cyclotron radius
Therefore, ny ¢ arn (¥ =X (8)
It follows from a formal expansion of (3) that

E = =
\ li:2 constant ( 9)

z= E3 constant (10)
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We now proceed to obbain 2 equations for the variables
B_and B, from the remaining equaticus (), (5), (6).
It is also useful at this stage to change fram e. s.

to =.m. units by means of the transformation e —* ce,

b d

- - —d
E~— - B~ Bo
c
Reducing eguation (k) to 3 scalar equations and substituting

(8) in the first one, wa obtain:

u =w_ =70 (11)

F=F =F =n u =21 u =N (12)

The other 2 scalar equations from (4) give in the same way:

%:-hneﬂ (vp-ve) (13)
%=hﬂeN(wp-we) (14)

We also reduce the momentum =2quation (6) to 3 scalar equatioms

in ug, v, W, by formal expsusion. Substituting (13), (14)

in the first one, suwming over U, defining m, = mp + nie and F = ntNU

(Total mass flux in the direction of wave propagation), we obtain:
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e ()]

This may be integrated directly to give:

FU + -2 [B 2+B 2] = J[. = constant, (15)
gy - Y z o
a familiar conservation eguation.

The second and third scalar equations derived trom (6) also
lead to correspoading conservation equations along the 2 transverse
directions. With the substitution of (7), (13), (14), they take

the form:

B
5 e e
F [‘Pvp * meve] 4o * nz (6)

m B, B
t 1z g (17)
o s

I"[mv +nw}=
PP e e

whers 1‘[2 and us are constants.
We now eliminate Ex end N as varlables. We rsturn to the
scalar equations obtained from (6), but do not sum over 0, obtaining

expressions for

Uy du(J U dvg Ug c'iw(J
- - D
ax dx ax

for both protons and electrons. Using u, =u, = U from (11),




~=

and subtracting the first 2 equations gives:

Ex=it- By(m wp+mpw)-B(nv+n v)} (18)

Next, we substitute N = -1[; from (12) into (13), (14) and

differentiate the resulting equations with respect to time:

B = ~4mreF (vp - ve) and By = 4meF (vp - we) s

where w.rp R v'e R \'fp and w_ may be eliminated from the last 4 scalar

equations from (6). This ylelds

'ﬁz = -4ne3F [7:; {Ea + (wa1 - UBZ)} +%1: {:Ee + (w3, - UBz)}] (19)

B = 42w [:-g { E_+ (UBy - Bl‘vp)} + :Te {ES + (may - Blve)}] (20)

Finally, we must eliminate the variables u, vp, Vo? wp, we
from equations (19) and (20); U is directly obtained from (15),
and the transverse velocity components obtained from (13), (14),
(16), (17) after a considerable amount of algebra. After substitution

of these quantities, equations(19) and (20) become:
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- LTie? [@‘E ] EZ_BA_-)— BB . {“ ) (B 2+ Bz"-)} {B \ (me:m) Bl(?i?}]
Y nm s m, hm © 8r Y ymeF dx

P e

- =Lme2 B B.2B B2+ B2 - B,[daB\ - B
) B )
z mpme 2 m iy ° 8 TeF dx

t

It is convenient to rewrite the above equations in a dimensionless

form by defining some new dimensionless variables and constants:

=Db Vﬁ = =
Bl 1 o B.')’ by‘V Sﬁﬂo Bz bz V4 mo
exno € Ho e Il
E, = E = 2Bl E = -22v&r
X 'F‘: (o] 2 ._-F- o] s f'- fo)
Lire2l - /Bl
Q 2 = t = .I X = (m mp) g 8” (2}
© m m Q kreF
P e [0}
1 I
I m 2 IT m s = eom
ot ot b
1
= - = =€ - - - 2
n es kgbl n € ksbl p = =2 bl
b¥ 2 -
AN
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The resulting equations further become homogeneous Iln the

derivatives by the formal substitution of vd_4a .4 (15).
dx dt
We then obtain:
2
4by =m+ b+ {1- (by2+137_2)}+q£‘."£ (21)
ar2 ar
dzbz db
=n+ pbz+bz {1- (by2+‘bzz)}-q—x (22)
ar? ar

The problem is to solve (21) and (22) for any given angle a.
However this cannot be done with the existing equations since by
and b, (we do not need to worry sbout the constant b = bl) are
the dimensionless components of the total local instantaneous
magnetic field, and this last vector will generally make an angle Y
with the plane waves where, of course, Y is itself some unknown
function of position.

This difficulty 1s easily resolved by introducing 2 new

varisbles By and B, to replace by_ and b (refer to Figure 1):

o
il

b. =bp sin O cos #
b4 1 o] o o)

=Db + =b sin 6 sin & + B
by 2 By o o 0 y



Laboratory
Frame
z

1 /

B; X-x =Vt

Figure 1. Components of b and bo in the Wave Frame
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So far, only the position of the x axis in space has been
determined; the orientation of the y, z axes is arbitrary. However,
the equations for 3,— and Bz bhave their most symmetric form when

P =b . In that case,
2 s

b =b, =2=Db_ 8Bin
X ]

1
b
b =b +B_ =-2 cosa +B
2 Y ﬁ
b
[*}

It is also useful to substitute T = gr, (qa)-l = ¢. After

these changes, (21), (22) take the form:

ass ds

¥y — _z 2 s 2 _ 2
a®  ar G[A+mv+mr “pS e, B, BT psf] ()

ap a8
ar? ar ¢ [G By TRy m B TR T BP, T By Byzaz] ()
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where the coefficients A, By « o « G, q (oOr ¢) are constauts with

the angle o« as a parameter. They are:

1 IB sina B cos a B2 B 2sgin’a
As———|(n +m) NUE - &2 + = (II -2 .2 )
[ P s o

nys,

(mg + mp) /2 8m 8n
1 I B sin o B cos @ Bo2 Bozszln2 o
G = ~(my + m ) WE_ - -2 + Ip.2 .
IIOVWO (ne + np) v2 8 8
2 [ed
Bo l-1 3B°..os o 3 coy o
B = l - = G— c = e = e
bell ' uVTTITO 2k
Bozcos2 o cos® o B cos cog o
D= = = w E= = = -
81TH° 2 ¥ 2\/?711'0 k
B cog o cos O
o
F = e= S —— AR -
h\fr'rTTo 2x
1 B sin o (me - np) sin o (ne - np)
q= = -




«
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B. Evaluation of the coefficients in the equations.

In order to solve the coupled equations (23) and (24) in
& given situation, thelr coefficients must be known. These
quantities depend on a, B (wvhich we assume to be 0.39 gauss
corresponding to the mean geomagnetic field at an altitude of
200 km. above the earth's surface) 2Ty T» ns, E2 and ES. The
last 5 constants are so far arbitrary, since they were defined as
integration constants. We now briefly cutline how to obtain the
order of magnitude of thess constants.

1. From (15) and the definitions of a, F,

Ho=mt

thUE+-§T-T [G}g ccaa+By)2+ (;% coﬂa+Bz>2]

NU2 +%?r [By2 + BZZJ

where B = VB B, B, =VE, B,

We require that utmﬁ 2 0 so that the characteristics do not
cross themselves. For a = 90°, it will lster be shown (refer to

III.A) that there is an exact solution:

By=/'87rr'ﬁ°,/§siny, B, = /Bull /B cas Y, where B = 0

2

With B = 1 - —=— (from Page 12), we obtain after substitution:

bril
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k2B 2
0

o , where 1 Sk < ®
it)s

x®B @
o
More zenerally, we also take Ho = and adjust
Lrr
the amplitude of By’ ]3z to keep
Z Q.
thUZ 0
B,
2. Substituting B =-— cos @ + B, in (16) and rewriting
y /2

this equation, we obtain:

= + -
K‘.L K‘2 [mpvp neve] Ks »

where Kl’ K2 and K3 are constants. We take the average of

this equation over 1 cycle, noting that
%-"O,K =K,etc . ..,mtﬁmp

The same argumsnts are valid for Hs by symmetry, and:

mtBoz sin o cos

I =01 = K -
2 3 II-TT ‘/'2‘

, where 0 S K <=

3. From the symmetrical cholce of the y - z axes
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relative to —]30,

i E
‘ E = =« =tw—
2 S )

We substitute this and the results obtained above for

o, Hz, and Hs in the expressions for A, G given previously.

After some algesbra, we get:

h coB o
A=0¢=— |K(1- sina) + (X2 ~ cos® a)
Y2 ¥T

1‘hisinpliesthatA=G=0fora=90°andwewillreturn

to this point in part IIT. A.
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III. SOLUTION

A. Solution for a Mlpn< g < 90°.

We rewrite (23), (24) in the simplified form:

2
a8, ) s, _
ar ar
a% ds

Z + L - .r
ar? ar

(231)

(24')

where A = A (By’ Bz), r=r (By’ Bz), and ¢ 18 small. The zeroth-

order solution (e = 0) of these equations is trivial:

By(o) a sinvy

(o)

z s COB ¥

w
i

= 1, y=T+6

We now differentiate (23') and (24') once, and rearrange

the results to uncouple the dominating terms:

;§x+iﬁ1=e[r¥%]=eM

(25)
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a3s ap
2+ & = L AT = en (26)
ar® At *lar ] ¢

It 18 now possible to write a perturbation expansion when

¢ # 0, using the Bogoliubov-Mitropolsky formalisn®:

By=asin¥+eB§])(&, v+ ..

Bz=aco=!+eﬂ-za)(a,y)+.-
where!

da

- = cAl(a)+- .

4aT

ay.

1+ (&) + . .
4T €Bl°‘

Using these expressions, the left-hand sides of equatlions

(25) » (26) may now be written after some algebra, to order ¢:

asg as 3o61) (1)
d 98
E—x + :Tl = eg£¥+ *a-%' "23%‘ COBY"ZAI BinY]

# N. N. Bogoltubov and Y. A. Mitropolsky, Asymptotic Methods in
the theory of Non-ILinear Osclllations, 1961, Gordon and Breach

Science Publishers, New York.
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8, . [_h(l) (ll 2 a B sin ¥-2A cos z]

ar° ar

These results should be equated to the

corresponding quantities in the right hand sides:

3%.(1) 3.(1)
;}l+ ;yl = £ (a, ¥) +2A sin ¥ + 2aR cos ¥

3%, (1) 3,(2)
3}_3+ —5-; = lo (a, ¥) +2Alccﬂ'!—2aBl sin ¥

where fo and lo are the zeroth-order expansions of M and N.
We will solve (27), (28) for ﬁ’_(,lkz(l)oy Fourier expanding f_, 1

as well as B(y}) Bil):

£, (a,y)—g (a)+2 {gn(a) cos n¥ + h_ (a) sinn‘y}
1 (a, ¥) = P, (a) +2 {p (a) cos n¥ + q (a) sin ny}

B‘lxa, ¥) = v, (a) +2 {v (a) cos n¥ + w (a) sin nsy}
n=1

(27)

(28)
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Bglka, v =u (a) +§, {ﬁn (e} cos nt + r_ (a) sin n&}

We substitute these series in (27), (28) and equate coefficlents

of identical harmonics to ge

g, (a) =1 (a)
vy (a) = Wy (a)

forn =2, 3, . .13

() - 2
v, (8) = ——
n (n®-1)
9, (a)
w_ (8) =
n n (nZ-1)

With the conditions:

gl(a.)+2aBl=O

q (a) - 2a B, =0

t:

=ul(a)=r1(a)=0

(o) = T
W (a —
n n (nZ-1)
-p_ (a)
) =B
"n (e n (n3-1)
h, (a) + 2A, = 0

p, (a) +24 =0

We note that v _ (a) and u (a) remain undetermined so far,

because they have disappeared in the differentiations.

retura to this point in the next section.

We will
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We now apply these general results to the two cases of interest:

O

I) a =90

Then C = D=E =F = 0., After substitution of the zeroth

order results and some simplifications, fo and 1o finally becoms:

£, (a, ¥) = [A + 28 (B-a®) ces ‘i]

1, (a, ¥) =~ [A + 28 (B-a®) sin Y]

We identify these terms with those of the Fourier expansions

and then apply the general results on page 19 to get:

v=w=n=rn=0forn=l,2,3,o-

ay =0 B = a®-p

However, vo(a) and uo(a) are still undetermined so far.
Since A = 0, the only effect of vo(a) and uo(a) is to add small
constant terms to B (1) (1)

y
tim= average of B v Bz over a cycle must be zero. Therefore

and Bz ;3 from their definitions, the

vo(a) = u (a) = 0.
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We then have, to first order,

By=asin’f Bz=acw‘i’
2—;=o %=1+e(a2-13)

II) a Min< a< 90° :

We first substitute C = 3F, D =-2F°, E = 2F and evaluate

f , 1 as before:
o’ o

fo(a, ¥) = [(A + 2F 8%) + 2a(B-a®) cos ¥ + 3Fa® cos 2¥ + 3Fa® sin ay]

1o(a, Y) =—[(A + 2F %) + 2a(B-a®) sin ¥ - 3Fa® co8 2¥ + 3F3" sin 2}’]

Proceeding as in the case @ = 90°, we obtain:

2 - = - =
A + 2Fa® = go(a) po(a) 0
2
VYV = ol = =1 = = = -Iia'—-
2 2 2 2 2




A =0 B1=32-B

which gives the first order solution:

- ¢ Fa? Y _ da _
By—a.s:[n'!'+—-—-—-2 (cos 2¥ - sin 2¥) T - (o}
2
Bz=acos’f-ega (cos 2¥ + sin 2Y) %=1+e(32-B)

However, it can be verified that the asbove results do not
quite satisfy the original equations (23'), (24') to order ¢,
although they satisfy exactly the derived equations (25), (26)
from which they were obtained: +this is because we lost some

information in differentiating (23'), (24') to obtain (25), (26)

This can be remedied by adding the terms e¢F* a coS Y and eF° a siny

to By and Bz regpsctively. The modified solution will now satisfy
(23'), (24') as well as (25), (26) to order ¢; it also reduces

exactly to the solution found previously for o = 90°.

The final first order solution then takes the form, for

aMin<a.S90°:

2
asiny+ega' (cos 2¢ - sin 2¥) + ¢ F°a cos ¥

W
]

2
cFa (cos 2Y + sin 2Y¥) + ¢ Fa sin ¥

a cos ¥ -

w
I

(29)

(30)
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]
o

vhere da & l1+e (aZ—B) A+ 2Fa® =
aT

Let us first consider the case « = 90O in more detail, i.e.

F = 0. An interesting special case is to choose a2 = B (No frequency

shift). The first order solution then becomes the exact solution,
giving circularly polarized waves propagating in an incompressible
medium (Alfvéh Waves). This agrees with the conclusions of Ferraro.
After some algebraic manipulations, we can then obtain By =B (x),

y

B, =B, (x) exactly:

B, ¥2 (k-1)  sin [ ex (me - mp) «6”T(nb,+ mP) N ]

B =
Y me m
B, =B, Je (k®-1) cos [ ex (m, - ) S (me + mP) N ]

m m
ep

The wavelength A is therefore given by:

2T m m ] v
)\=[ "‘_A_
e (m.p - n%) yir N (m.e + mp) Qe

where Qe S — is the electron cyclotron frequency. It may also

e

be verified from (15) that



U = constant = = Vp (Alfvén Speed)

For az* B, the waves are more complicated and propagate

in a compressible medium. This is always the case for intermediate

angles.

We observe that the condition A + 2Fa® = O always gives
a relation between the transverse electric field E' and the

angle a, for a given field energy density and the amplitude a.

Finally, it must be stressed that this solution is only
valid for o Min < @ < 90°. The minimum angle o Min depends on
the field energy density and the type of ions present. (Refer
to the definition of ¢ on Page 12). This is also discussed

in part IV.

B. Solution for a = 0° (Magnetosonic Waves).

Then q = O and equations (21), (22) reduce to:

a*p

_ 2 s 2 _ 2
#_A+my+$Y’By+mz+mrBz+mz B
d_ZB}.—A+ +(82-Bs+m + BB +m2_BZB
qr2 B mz z z y y‘az y vz

A first possibility is that B may he linearly polarized along

(21%)

(227)

ﬁo; then sy =B, =B at all times and equations (211), (22') becoms
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identical:

2 2 2
a=p a8, a=p

= A+B(®B+D)+B2 (C+E+F) - 2p°
ar2 ar@ ar®

From intuition, we expect to obtain infinitely periodic solutions
in B for restricted values of A, B, D, . . since the last equation

has the form of a modified simple-harmonic oscillator equation.

A more formal way of seeing this is to transform the differential

*
equation to an integral:

Wi

2
as _ B g3 B
<a;-> —AB.+2— (B+D)+-3-— (C+E+F)--2-—+n4,

where J] is a constant. It follows that the formal solution may be
4

written as:

T (T ) dp

fz d’]’:—l._

"1 /2 (T)\/AB+-—(B+D)+ (c+E+F)-——+n
2 3 2

The allowed limits on A for which & periodic solution will exist

may be obtained by solving

*This approach is similar to a treatment developed by David, List
and Schliuter, except that we use B as the variable instead of the total

field intensity b: this adds a cubic term to the "potential”.
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A+B(B+D) +B2(C+E+7F) -283%= 0

so as to have real roots. After substituting C+ E+ F = --E )

B+ D= %,nobtain:

These limits are consistent with thoss obtained for the
electric field E' using the total field b instead of B, If we
return to Page 13 and investigate the no-looping condition for a = 00,

this condition may b= expressed as follows:

- (REL) <p<(BE)

Since E' (or A) may have any value between 2 finite limits, the
wavelength A is not uniquely determined in this case, but will depeni
upon the parameter A and the initial conditionsin a rather complicated
way. There are 2 interesting special cases in which the wavelength

becomes infinite:

2%2 - 1

~ ), A = ® 1f we set the
Ix

a) When E' = 0 (A = A Max =

initial conditions so that

QD - FR), B




b) WhenE'=-723r E-Q—r—“&ﬂ (A=AMin=Ek%{§-—l -7\/3?

A= if

(.1 1\ &8 _
B—("E *rar =0

Physically thls means that we do not really have waves

any more, all physical variables are constant in space and time:

a8

_a% _ o
ar are
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IV. NUMERICAL RESULTS

A number of arbitrary constants (Ho, Ha, . «) were introduced
during the derivation of the original differential equatioms,
and the total number of modes is therefore very great; however,
we simply want to illustrate the typical behavior of the waves,
80 we first décided on a single value of I or k =\/1—m5’, and
a® = B. The constant F is determined from the exact result for
a = 90° on Pages 23 - 243 all other coefficients (except A)
in the differential equations were evaluated for 12 different
angles using the formulas on Pages 12 - 15 while A iiself was
determined from the condition A + 2FB = 0 found on Page 23
for a Mln< a = 90°; for a = O°, any value may bz taken between
the limits given on Page 25 - 26. In order to have a finite

wavelength, we tock the typical value A = O.

The exact equatioms(23), (24) were then solved numerically
for 12 values of a on an IBM 7094 computer usinzg initial values

calvulated from the perturbation results (29), (30).

The wavelength A was determined to a good accuracy for each
angle by inspection of the tabular results for By and Bz against
x, noting at which points the field quantitlies returned to their

initisl values. For = 90°, this method gave A =~ 122 cm., which

* ™is corresponds to (B) ¥ex = (B,) Max = 0.1 B for a = 90°.
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agrees quite well with the analytical result (123 cm.) calculated

from the formula on Page 23.

Te field quantities are plotted against x (for o < x <))
for each angle on Pages 33 - 3%, and a graph of )\ against a is shown
on Page 35; the results for o < a < 2.5° are interpolated since
the accuracy of the perbﬁrbation expansion 1s not good for very

small angles.

The order of magnitude of the minimum angle o Min at which
the perturbation theory will break down may be obtained approximately
by using the ratio test: 2 < 1. This gives a Min = O(1°)

for the parameters chosen in the example.




-30-
V. CONCLUSION

The problem of non-linear plane waves propagating in a
fully ionized hydrogen plasms under an applied magnetic field
B, at an angle (90° - a) between the wave vector and B, has
been divided into 2 parts: if the angle o is larger than a
certain critical angle o Min, a first-order perturbation solution
was obtained for a Min < o < 90°; for a = 0°, the solution is
reducible to an integral and is multiply valued; for O < a < a Min,
the problem remmins unsolved. Fortunately, a Min is quite s=sll
here (0 (1°)), so that the perturbation result gives a solution

over most values of «.

Because of local fluctuations in B, and N, the "{nfinitely
periodic waves' described here will actually only propagate
undistorted in regions of the ionosphere whenethese quantities
are constant. Finally, the assumption of a "fully ionized
hydrogen plasma" is only an idealization to keep the equations

tractable.
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TABLE

I.

»*

Numerical values of coefficilents in the differential equations and initial values of the variables.

@ o° 2.5° 5.0° 10° 20° 30° 40° 50° 60° 70° 80° 50°
A=G o.oommoo 0.495802x1072  0.404383x2072 ~0.488735x10 2 0.466343x1072  0.4297686x107% 0.380165x10 2 0.319000x10™2 0.248136x10 2 0.169735x10 2 0.861778x10° 2 0.000000
B 0.497512x10"8  0.497512x1072  0.497512x10°2  0.497512x1072  0.497512x10" 2 0.497512x1072  0.497512x10°2  0.497512x1072 0.497512x10°2 0.497512x10™2  0.497512x10™% 0.497512x10"2
o -1.496264 -1.4ou843 -1.490563 -1.473536 -1.40602k4 -1.295804 -1.146198 -0.961784 -0.748132 -0.511752 -0.259826 0.000000
D -0.497512 -0.496567 -0.493728 -0.482512 -0.439313 -0.373134 -0.291950 -o.m&umm -0.124378 -0.581990%10™* -0.150000x10""  0.000000
E -0.997509 -0.996561> -0.993708 -0.982357 -0.937349 -0.863869 ~0.764132 -0.641189 -0.498755 -0.341168 -0.173217 0.D00000
F -0.498755 -0.498281 -0.496855 -0.491179 -0.468675 -0.431935 -0.382066 -0.320595 -0.249377 -0.170584 -0.866088x10°”  0.000000
a 0.000000 -1.863148 -3.722878 ~T.4171% -14.60875 -21.35657 -27.45559 -32.71998 -36.990698 -40.13712 -k2.0643k -42.71315
ao 0.121643x10™"  0.121643x10"  0.121643x10™0  0.121643x107  0.121643x107° 0.121643x10™" 0.121643x10 " 0 121643x107"  0.121643x1070  0.121643x1070  0.121643x10*  0.121643x10°
a, 0.160501x10°  0.160501x10°  0.160501x10°  0,160501x10°  0.160501x10°  0.160501x10°  0.160501x10°  0.160501x10° 0 .160501x10°  0.160501x10°  0.160501x10°  0.160501x10°
F 0.900028¢10™° 0.900028107° 0.900028x10¥° 0.900028x10™° 0.900028x10™® 0.900028x107 0.900028x10™™ 0.900028x10™F 0.900028x10™2® 0.900028x107¢ 0.900028x10** 0.900028x10™*
/B 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921 0.552921
K -0 .uuammw -0.366336 -0,384912 -0.429840 -0.558941 -0.759346 -1.063887 -1.531668 -2.295969 -3.755430 -7.917182 @
By 0.705345x10™"  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
8, 0.705345x10°"  0.705345x10  0705345x1070  0.705345x10™  0.705345x107"  0.705345x107  0.705345x207 0.705545x107"  0.705345x10™"  0.705345x10 1 0.705345x1071  0.705345x10™"
ag .4\.\? 0.000000 -0.131416 -0.262591 -0.523164 -1.030421 -1.506375 -1.936566 -2.307887 -2.,609120 -2.831052 -2.966987 -3.01275
a8, /aT  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

# Mhese are computed from equations {29), (30) at T =T = 0. Other data: N=na =1 = L x 105 particles / cm®.

»% % Refer to part IV for these numbers. m = 1.672 x 1072* gm.
n = 9.108 x 10728 gm.
e = 4.803 x 10™° e.s.u. = 1.602 x 10°2° L.m.u.
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